Given some examples of solving question from Chain Rule. Follow the steps and solve rest of the questions given below.
Question 1: Differentiate f(x) = e^{4x^3 – 2x}.
Step-by-step solution:
- Outer function: e^u, where u = 4x^3 – 2x.
- Differentiate outer: \frac{d}{du} e^u = e^u.
- Differentiate inner: \frac{du}{dx} = 12x^2 – 2.
- Apply chain rule: f'(x) = e^u \cdot \frac{du}{dx}.
- Final answer: f'(x) = (12x^2 – 2)e^{4x^3 – 2x}
Question 2: Find f'(x) for f(x) = \left( \ln(5x + 3) \right)^4.
Step-by-step Solution:
- Outer function: u^4, where u = \ln(5x + 3).
- Differentiate outer: 4u^3.
- Differentiate inner: \frac{du}{dx} = \frac{5}{5x + 3}.
- Apply chain rule: f'(x) = 4u^3 \cdot \frac{du}{dx}.
- Final answer: f'(x) = \frac{20(\ln(5x + 3))^3}{5x + 3}
Question 3: Differentiate f(x) = \frac{1}{(3x^2 + 2x – 1)^5}.
Step-by-step Solution:
- Rewrite: f(x) = (3x^2 + 2x – 1)^{-5}.
- Outer function: u^{-5}, where u = 3x^2 + 2x – 1.
- Differentiate outer: -5u^{-6}.
- Differentiate inner: \frac{du}{dx} = 6x + 2.
- Apply chain rule: f'(x) = -5(3x^2 + 2x – 1)^{-6} \cdot (6x + 2) = \frac{-10(3x + 1)}{(3x^2 + 2x – 1)^6}
Question 4: Find f'(x) for f(x) = \sqrt{\ln(2x + 1)}.
Step-by-step Solution:
- Rewrite: f(x) = (\ln(2x + 1))^{1/2}.
- Outer function: u^{1/2}, where u = \ln(2x + 1).
- Differentiate outer: \frac{1}{2}u^{-1/2}.
- Differentiate inner: \frac{du}{dx} = \frac{2}{2x + 1}.
- Apply chain rule: f'(x) = \frac{1}{(2x + 1)\sqrt{\ln(2x + 1)}}
Question 5: Differentiate f(x) = (e^{2x} + x^3)^{-3}.
Step-by-step Solution:
- Outer function: u^{-3}, where u = e^{2x} + x^3.
- Differentiate outer: -3u^{-4}.
- Differentiate inner: \frac{du}{dx} = 2e^{2x} + 3x^2.
- Apply chain rule: f'(x) = -3(e^{2x} + x^3)^{-4} \cdot (2e^{2x} + 3x^2)
- Simplify: f'(x) = \frac{-3(2e^{2x} + 3x^2)}{(e^{2x} + x^3)^4}
Questions | Answers |
---|---|
1. f(x) = (2x + 5)^3 | f'(x)=6(2x + 5)^2 |
2. f(x) = \sqrt{3x^2 + 4} | f'(x)=\frac{3x}{\sqrt{3x^2 + 4}} |
3. f(x) = \frac{1}{(5x – 7)^2} | f'(x)=-\frac{10}{(5x – 7)^3} |
4. f(x) = (x^3 + 2x)^4 | f'(x)=4(x^3 + 2x)^3(3x^2 + 2) |
5. f(x) = \sqrt{(x^2 + 1)^3} | f'(x)=3x\sqrt{x^2 + 1} |
6. f(x) = \frac{(4x – 1)^5}{2} | f'(x)=10(4x – 1)^4 |
7. f(x) = (x^2 + 3x + 5)^3 | f'(x)=3(x^2 + 3x + 5)^2(2x + 3) |
8. f(x) = \sqrt[4]{2x + 7} | f'(x)=\frac{1}{2(2x + 7)^{3/4}} |
9. f(x) = (x^2 + 4)^{5/3} | f'(x)=\frac{10x}{3}(x^2 + 4)^{2/3} |
10. f(x) = \frac{1}{(3x^2 – 2x + 1)^4} | f'(x)=-\frac{24x – 8}{(3x^2 – 2x + 1)^5} |
11. f(x) = \frac{7}{5 – 2x} | f'(x)=\frac{14}{(5 – 2x)^2} |
12. f(x) = \frac{1}{\sqrt{4 – x^2}} | f'(x)=\frac{x}{(4 – x^2)^{3/2}} |
13. f(x) = \left( \frac{1}{2}x + 3 \right)^7 | f'(x)=\frac{7}{2}\left( \frac{1}{2}x + 3 \right)^6 |
14. f(x) = \frac{1}{(x^3 – 4x + 1)^{2/3}} | f'(x)=-\frac{2(3x^2 – 4)}{3(x^3 – 4x + 1)^{5/3}} |
15. f(x) = (5x + 1)^{2/5} | f'(x)=\frac{2}{(5x + 1)^{3/5}} |